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Abstract. Improving labor flexibility through cross-training is one of the effective ways to respond to 

demand fluctuation. In this paper, the optimal timing of cross-training is investigated considering demand 

uncertainty, and labor flexibility is measured by redundancy level. Cross-training can be treated as 

investment in labor flexibility, so a trinomial lattice based on real options valuation is employed to model the 

evolution of demand. A stochastic dynamic programming model is formulated. With a numerical example, 

the proposed approach is proved to be effective in finding the optimal training plan with the consideration of 

all possible demand scenarios. Results of the numerical example also provide a way to estimate the value of 

labor flexibility. 
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1. Introduction 

Cross-training is a way to quickly improve productivity and flexibility with rather low investment, 

especially for assembly lines, U-shaped lines, and manufacturing cells [1,2]. Multi-skilled workers can 

effectively mitigate the influence of demand uncertainty, but overtraining has a negative effect on production 

efficiency and product quality as well. Therefore, it is important to determine how many workers should be 

cross-trained and how many skills each worker should master.  

A lot of research has investigated how to improve flexibility through reasonable cross-training and 

proposed some cross-training strategies, such as cherry picking, D-skill chaining, and closed chain [3-7]. 

These strategies are useful for analyzing the effect of cross-training on flexibility. Liu et al. [8] investigated 

the cross-training and worker assignment problem when a conveyor assembly line is entirely reconfigured 

into several serus, and they proposed a heuristic algorithm to solve the two problems simultaneously. Azizi 

and Liang [9] proposed a two-phase heuristic algorithm for solving task assignment and training problem of 

multi-skilled workers in cellular manufacturing considering the impact of task rotation on skill level. 

Nembhard et al. [10] investigated cross-training problem in a sequential production line with two 

workstations considering task heterogeneity, worker heterogeneity, labor dynamics and product dynamics. 

Yang and Gao [11] investigated the adjacent workforce cross-training policy in a flexible mixed-model 

assembly line. A real option valuation technique is employed by Qin and Nembhard [12] to optimize the 

design of workforce agility for maximum expected return in a stochastically diffused environment.        

The flexibility of cross-trained workers can be defined by means of three concepts: multifunctionality, 

redundancy and functional flexibility [13]. The aforementioned research mainly focuses on 

multifunctionality, that is, the number of different skills a worker should be trained. This study investigates 

cross-training from the viewpoint of redundancy. A real options approach is employed to determine the 

number of workers should be trained for a specific skill and the optimal timing of training each worker. 

2. Problem Description 

We consider a two-phase cross-training problem with uncertain demand. The labor flexibility is 

measured by redundancy level, so we want to find out how many workers should be trained for a skill. 

Generally, the productivity of a product is determined by the number of workers who master the key skill. In 
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this problem, workers must finish two separate training phases, basic training and specific training, in order 

to master the key skill. The two phases must be implemented sequentially, because basic training teaches 

some fundamental techniques. Therefore, the productivity of a product approximately depends on the 

number of workers who have finished the two phases.  

In order to make quick response to demand fluctuation, more workers can finish their basic training 

firstly. A few of them start their specific training immediately after the basic training to satisfy current 

demand. Whether the remainder will start their specific training mainly depends on future demand. 

Apparently, costs related to basic training increase. In fact, extra basic training creates an opportunity to 

quickly expand productivity once the demand increases. Therefore, costs paid for extra basic training can be 

treated as an investment on flexibility, and the manufacturer gains a real option for expansion. 

Notations used for the formulation of the problem are listed as follows: 

t    index of time periods; 

T    the number of time periods; 

M   the number of workers; 

ne   the number of workers who have already finished two training phases; 

V   available capacity of a worker; 

tu   unit processing time of the key skill; 

P   price of the product; 

Cf   unit cost of the product; 

Cs   hourly pay for workers; 

Cb   costs of basic training; 

Ce   costs of specific training; 

Cp   penalty cost; 

f    inflation rate; 

r    discount rate. 

Assuming M workers are available, the capacity of each worker is V, and the product’s lifespan is T. 

After T time periods, it will withdraw from the market and its key skill can not be used to process other 

products. There are ne workers who have finished two training phases. If capacity of the ne workers can not 

satisfy the demand, there will be a penalty cost. Decision variables are the optimal number of workers 

participate basis training when t=0 (N), the number of workers finished two training phases when t=0 (n0, 

n0≤N), and the optimal number of workers finished two training phases in each period (nt, t=1, …, T-1). nt 

can be treated as the expansion decision made at the beginning of each period. 

Assuming demand over [t, t+1] is dt, t=0,…,T-1, a cash flow stream for the net profit of the product (xo, 

x1,…, xT-1) can be identified based on N and nt. At t=0, N and n0 should be decided, the related training costs 

are 

       𝑥0 = −𝐶𝑏𝑁 − 𝐶𝑒𝑛0.                                   (1) 

Assuming the specific training would take one time period, so the productivity over [t, t+1] is determined 

by nt-1. At any t>0, the total net profit accumulated over [t, t+1] is  

 𝑥𝑡 = [𝑃 ∙ min(𝑑𝑡 , ⌊60(𝑛𝑡−1 + 𝑛𝑒)𝑉 𝑡𝑢⁄ ⌋) − 𝐶𝑠 ∙ min(𝑑𝑡𝑡𝑢 60⁄ , (𝑛𝑡−1 + 𝑛𝑒)𝑉) 

−𝐶𝑓 ∙ min(𝑑𝑡 , ⌊60(𝑛𝑡−1 + 𝑛𝑒)𝑉 𝑡𝑢⁄ ⌋) − 𝐶𝑒(𝑛𝑡 − 𝑛𝑡−1) − 𝐶𝑝 ∙ max⁡(0, 𝑑𝑡      

−⌊60(𝑛𝑡−1 + 𝑛𝑒)𝑉 𝑡𝑢⁄ ⌋)](1 + 𝑓)𝑡                                                                              (2) 

where the five parts represent revenue, payment, product costs, specific training cost and penalty cost 

respectively. 

The expansion decision nt is subject to  

                    𝑛0 ≤ 𝑛1 ≤ ⋯ ≤ 𝑛𝑇−1 ≤ 𝑁 ≤ 𝑀.                            (3) 

Based on (xo, x1,…, xT-1), NPV of the net profits can be determined by 
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                            𝑁𝑃𝑉 = ∑
𝑥𝑡

(1+𝑟)𝑡
𝑇
𝑡=0 .                                  (4) 

3. A Real Options Approach 

The demand of product is dt over [t, t+1], its logarithmic form is Dt=lndt. Dt is assumed to follow the 

following stochastic process:  

       𝑑𝐷𝑡 = 𝜇(𝐷𝑡 , 𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡                                  (5) 

where 𝐵𝑡 is Wiener process, 𝜇 is drift function, 𝜎 is the volatility.  

The trinomial lattice model is employed to approximate the uncertainty characterized by (5) [14]. In the 

trinomial lattice, each demand node branches out into three demand nodes. The lifespan of product is divided 

into several time periods, and the demand may increase or decrease with a constant ∆𝐷 during each time 

period. At time period t, the logarithmic demand is 𝐷𝑡,  it branches out into three possible values, 𝐷𝑡 +
(𝑘 + 1)∆𝐷,⁡𝐷𝑡 + 𝑘∆𝐷, and 𝐷𝑡 + (𝑘 − 1)∆𝐷, with probabilities 𝑝𝑢,⁡𝑝𝑚,⁡𝑝𝑑. The constant ∆𝐷 = 𝜃𝜎, where 

𝜃 is a constant. The branching factor k is an integer, and the value of k is chosen such that 𝑘∆𝐷 can best 

approximate the expected drift 𝜇(𝐷, 𝑡) [14]. 

                                 𝑘 ≡ ⌊
𝜇(𝐷,𝑡)

∆𝐷
+

1

2
⌋                                       (6) 

The branching probabilities 𝑝𝑢,⁡𝑝𝑚,⁡𝑝𝑑 are determined using the following equations [15]. 

𝑝𝑢(𝑘 + 1)∆𝐷 + 𝑝𝑚𝑘∆𝐷 + 𝑝𝑑(𝑘 − 1)∆𝐷 = 𝜇(𝐷, 𝑡)                      (7) 

𝑝𝑢(𝑘 + 1)2∆𝐷2 + 𝑝𝑚𝑘2∆𝐷2 + 𝑝𝑑(𝑘 − 1)2∆𝐷2 = 𝜎2 + 𝜇(𝐷, 𝑡)2                    (8) 

                             𝑝𝑢 + 𝑝𝑚 + 𝑝𝑑 = 1                                       (9) 

The value of 𝑝𝑢,⁡𝑝𝑚,⁡𝑝𝑑 is between 0 and 1, so 𝜃 must be chosen between 2 √3⁄  and 2 [16]. 

At time period t, 𝐷𝑡  branches into 𝐷𝑡+1
𝑢 , 𝐷𝑡+1

𝑚 , and 𝐷𝑡+1
𝑑 , the corresponding cash flows are 

𝑥𝑡(𝑁, 𝑛𝑡−1, 𝑑𝑡), 𝑥𝑡+1(𝑁, 𝑛𝑡 , 𝑑𝑡+1
𝑢 ), 𝑥𝑡+1(𝑁, 𝑛𝑡 , 𝑑𝑡+1

𝑚 ), 𝑥𝑡+1(𝑁, 𝑛𝑡 , 𝑑𝑡+1
𝑑 ). The recursive relation among the 

three cash flows is  

𝑥𝑡(𝑁, 𝑛𝑡−1, 𝑑𝑡) = [𝑃 ∙ min(𝑑𝑡 , ⌊60(𝑛𝑡−1 + 𝑛𝑒)𝑉 𝑡𝑢⁄ ⌋) − 𝐶𝑠 ∙ min(𝑑𝑡𝑡𝑢 60⁄ , (𝑛𝑡−1 + 𝑛𝑒)𝑉) − 𝐶𝑓  

∙ min(𝑑𝑡 , ⌊60(𝑛𝑡−1 + 𝑛𝑒)𝑉 𝑡𝑢⁄ ⌋)−𝐶𝑝 ∙ max(0, 𝑑𝑡 − ⌊60(𝑛𝑡−1 + 𝑛𝑒)𝑉 𝑡𝑢⁄ ⌋)](1 + 𝑓)𝑡  

+ max
𝑛𝑡−1≤𝑛𝑡≤𝑁

{(1 + 𝑟)−1 [𝑝𝑡
𝑢𝑥𝑡+1(𝑁, 𝑛𝑡, 𝑑𝑡+1

𝑢 ) + 𝑝𝑡
𝑚𝑥𝑡+1(𝑁, 𝑛𝑡, 𝑑𝑡+1

𝑚 ) 

+𝑝𝑡
𝑑𝑥𝑡+1(𝑁, 𝑛𝑡 , 𝑑𝑡+1

𝑑 )] − 𝐶𝑒(𝑛𝑡 − 𝑛𝑡−1)(1 + 𝑓)𝑡}                                          (10) 

with boundary conditions 

𝑥𝑇(𝑁, 𝑛𝑇−1, 𝑑𝑇) = 0⁡⁡⁡⁡⁡⁡⁡∀𝑛𝑇−1, 𝑑𝑇.                            (11) 

Running the recursive functions from 𝑡 = 𝑇 to 𝑡 = 0. At 𝑡 = 0, we get 𝑥0  using the following 

equation.  

𝑥0 = max
𝑁,𝑛0

{−𝐶𝑏𝑁 − 𝐶𝑒𝑛0 + (1 + 𝑟)−1[𝑝0
𝑢𝑥1(𝑁, 𝑛0, 𝑑1

𝑢) + 𝑝0
𝑚𝑥1(𝑁, 𝑛0, 𝑑1

𝑚) + 𝑝0
𝑑𝑥1(𝑁, 𝑛0, 𝑑1

𝑑)]} (12) 

The optimal redundancy level is obtained by finding the N and n0 that result in maximal 𝑥0. 

4. A Numerical Example 

Tab. 1 shows the historical demand of product A during the past twelve months, and it will withdraw 

from the market after eighteen months. Only one worker has finished the two training phases, his/her 

available capacity is 40 hours/month. It takes 8 minutes to process one product at the task corresponding to 

the key skill. It is clear that one worker can not satisfy the demand. Therefore, the proposed approach is 

employed to determine how many workers should start basic training, how many workers should start 

specific training and when they will start specific training. 

Assuming 𝐷ℎ
′  follow the stochastic process described in (5), and it is easy to get the logarithmic 

demand 𝐷ℎ
′  based on 𝑑ℎ

′ , ℎ = 1,⋯ ,𝐻 given in Tab. 1. 𝜇(∙) is assumed to be a constant 𝜇 because we 

don’t have enough data. Using (13) and (14), the estimate of 𝜇 and 𝜎2 are 0.0410 and 0.0043 respectively, 

and ∆𝐷 = 𝜃𝜎 = √3 × 0.06525 = 0.1130. According to (6)-(9), k=0, 𝑝𝑢 = 0.4156, ⁡𝑝𝑚=0.5316, ⁡𝑝𝑑 =
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0.0528. Fig. 1 depicts the trinomial lattice that shows evolution of the demand in the future, and there are 

totally 318 possible demand scenarios.  

                         𝜇 =
1

𝐻
∑ (𝐷ℎ+1

′ −𝐷ℎ
′ )𝐻−1

ℎ=0                                  (13) 

𝜎2 =
1

(𝐻−1)
∑ (𝐷ℎ+1

′ − 𝐷ℎ
′ − 𝜇)2𝐻−1

ℎ=0                             (14) 

 

Table 1: The Historical Demand of Product A 

Month Demand 

volume 
Month Demand 

volume 1 309 7 415 

2 346 8 408 

3 322 9 432 

4 358 10 463 

5 384 11 456 

6 370 12 485 

 

Fig. 1: The trinomial lattice. 

Tab. 2 shows value of parameters, and Table 3 shows the expected NPV under different combinations of 

N and n0. Taking all possible demand scenarios into consideration, the optimal result is N=6, n0=1. At the 

beginning (t=0), 6 workers finish basis training, and one of them finish specific training. The other five 

workers provide flexibility to quick response to demand increase in the future. 

Table 2: Value of Parameters 

Symbol Value Symbol Value 

T 18 months P 800 yuan/unit 

M 10 workers Cs 50 yuan/hour 

ne 1 worker Cf 300 yuan/unit 

V 40 hours/month Cb 1000 

yuan/worker tu 8 minutes/unit Ce 3000 

yuan/worker f 5% Cp 800 yuan/unit 

r 8%   

Fig. 2 shows details of specific training plan under five demand scenarios. In scenario I, demand 

increases continuously, the remained five workers all finished the specific training, and they are trained in 

the 1st, 5th, 8th, 9th, and 11th month respectively. In scenario II and III, none of the remained five workers 
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starts the specific training. In scenario IV, demand increases firstly, and then decreases. Therefore, three 

workers finished the specific training in the 1st, 5th, 8th, and 10th month, and no more worker starts the 

specific training after that. In scenario V, demand decreases firstly, and then increases dramatically. 

Therefore, no one starts specific training until the 10th month. In the 12th month, two workers start specific 

training to response to the large increase in demand.  

We can also estimate the valuation of flexibility using results in Tab. 3. If N=n0, no extra worker can 

start specific training in the future, it means there is no flexibility to respond demand increase. If N>n0, 

workers who only finished basic training provide flexibility to respond demand increase quickly. Therefore, 

the differences between their expected NPV can be treated as the value of labor flexibility. For example, the 

expected NPV of (N=6, n0=1) is 4.6641 billion yuan, the expected NPV of (N=1, n0=1) is 2.2952 billion yuan, 

so value of the five more workers kept for future use is 2.3689 billion yuan, even higher than the expected 

NPV of (N=1, n0=1). 

Table 3: The Expected NPV (￥10,000) under Each Combination 

N 
n0 

1 2 3 4 5 6 7 8 9 10 

1 229.52          

2 411.33 411.31         

3 457.15 457.13 456.99        

4 465.23 465.21 465.08 464.83       

5 466.31 466.30 466.16 465.91 465.63      

6 466.41 466.40 466.26 466.01 465.73 465.43     

7 466.33 466.32 466.18 465.93 465.65 465.35 465.05    

8 466.23 466.22 466.08 465.83 465.83 465.25 464.95 464.65   

9 466.13 466.12 465.98 465.73 465.45 465.15 464.85 464.55 464.25  

10 466.03 466.02 465.88 465.63 465.35 465.05 464.75 464.45 464.15 463.85 

 

 
(a) Demand scenarios                       (b) Specific training plans 

Fig. 2: Specific training plans under different demand scenarios. 

5. Conclusion 

In this paper, we consider a two-phase cross-training problem with uncertain demand. The problem is 

solved from the viewpoint of redundancy to determine how many workers should be trained for certain skill 

and the optimal timing of training. A stochastic dynamic programming model is formulated. To deal with 

demand uncertainty, a real options approach is employed. Then, a numerical example is tested by the 

proposed approach. The results show that the approach not only provides the optimal training plan with the 

consideration of all possible demand scenarios, but also provides the training plan under each demand 

scenario. Based on the results of different combinations of N and n0, the value of labor flexibility can also be 

estimated. 
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